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Problem: ASR in Aging Nuclear Power Plants
Map Cracking at Seabrook
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Kreitman, K., 2011, U.T. Theses and Dissertations, 148 pp. 



Potential Cause: Neutron Irradiation and ASR

• RIVE-assisted ASR is a neutron fluence-
driven phenomenon

• Collisions with energetic neutrons induce 
lattice disorder in silicate minerals and 
causes aggregates to swell (i.e., RIVE)

• Siliceous aggregate reactivity increases as 
a function of RIVE

Walters, L. et al. 18th International Symposium on Zirconium in the Nuclear 
Industry



Application of new technology is dependent on use case:

Design Methodology

New 
Construction 

Developed additive is 
incorporated into 
concrete members

Retrofit – Service 
Life Extension

Additive is incorporated into 
cementitious coating applied to 

existing neutron-exposed members

Alternatively: Additive is incorporated 
into pre-cast panels that can be 

anchored to existing neutron-exposed 
members during scheduled downtime

Provides combined 
neutron shielding and 
ASR mitigation 

Provides highly 
efficient thin shielding 
to halt further damage 
from service life 
extension



New Construction Solution: Finely Dispersed Boron Admixture 
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Cross-section of concrete with 
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• Goal: Demonstrate that lithium, in quantities produced during in-situ transmutation, can 
safeguard concrete from RIVE-assisted ASR (Completed)

Alkali Silica 
Reactivity 
Mitigation

Project Objectives

• Designed experimental plan to show ASR-mitigation potential of transmuted lithium

• Performed ASTM C1567 (AMBT) and AASHTO T3380 (MCPT) 

• Two highly-reactive aggregates with different lithologies and silicate mineralogy 

• Lithium dosages based on predicted boron-to-lithium transmutation rate in typical 
LWR concrete biological shields (Vogtle 3 and 4) 

• Results

• Lithium effectively mitigated ASR expansion in mortars and concrete at predicted 
dosages

• Initial boron content can be adjusted based on individual reactor designs to minimize 
cost and maximize ASR-mitigation potential

• On-going

• Petrographic examination of ASR-afflicted mortars and concrete prisms following 
ASTM C856

• Goal: Formulate product based on current and future industry needs (Completed)
• Goal: Establish on-going discussions with concrete admixture groups and NPP OEMS under 

NDA with the intent of developing partnerships (On-going)

Technology to 
Market

• Goal: Identify boron compounds that do not significantly reduce workability, increase setting 
time, or reduce strength development in cementitious systems (Completed)

• Goal: Formulate boron admixture that meets ASTM C494 specification (On-going)

Cementitious 
System 

Properties

• Goal: Design cement-based neutron shields that are thinner with comparable or enhanced 
neutron shielding efficiency (On-going)

Thin-Layered 
Cementitious 

Systems

• Goal: Characterize damage propagation in irradiated cement systems with and without the 
presence of boron and track lithium production due to transmutation (On-going) 

Irradiation-Induced 
Damage and 

Lithium Formation

• Identify boron compounds that minimize negative effects on fresh and hardened 
properties while maximizing boron dosage rates and dispersion

• Experiments included isothermal calorimetry, setting times, slump loss, flowability, 
coefficient of thermal expansion, and compressive strength testing

• Results

• High boron addition and dispersion achieved without increased setting times, 
reduced workability, or reduced strength given appropriate application of plasticizer 
type and dosage 

• On-going

• Promising boron compounds synthesized in the lab are in the early stages of testing

• Relatively high boron content achieved with slight impact to hydration kinetics

• Admixture technology developed and modified based on feedback from NPP industry 
stakeholders, admixture suppliers, and NRC regulatory specialists

• Meets current industry needs (Operational LWRs)

• Retrofits: Admixture in thin shields (panels, curtain walls, coatings)

• Service-life extension of in-place concrete biological shields

• New Builds: Admixture in concrete biological shields

• Service-life extension of new concrete biological shields

• C494 type S compliant to meet NRC standards for use in concrete

• Meets future industry needs (Next-generation SMRs, proton therapy facilities, etc.)

• Allows shield-size reduction with no loss of shielding performance for optimal 
facility design

• On-going discussions with next-generation NPP OEM and multinational concrete 
admixture producer under NDAs with intent of establishing supplier-customer partnership 

• Neutron attenuation experiments developed to assess shielding performance

• Utilized two neutron sources 

• Plutonium-Beryllium Alloy – Mixed and purely fast neutron energy spectrum

• Average energy ~5 MeV; applicable to next-gen fast breeder reactors

• UF Training Reactor (UFTR) – Typical fission spectrum 

• Applicable to current-gen and next-gen fission reactors

• Reference Specimen: Concrete with same mix design and heavy aggregate used in a 
LWR shield

• Results

• Reduced shield thickness by 95% with no loss of shielding performance under a 
mixed and purely fast energy spectrum

• On-going

• Absorbed dose measurements due to thermal and fast neutrons using UFTR

• Specimens to be irradiated in UFTR 

• Exposure conditions: thermal and fast neutron fluences of ~1018 neutrons/cm2

• Replicate specimens exposed to same temperature-time history 

• Goal is to differentiate microstructural changes due to irradiation and 
temperature effects

• Petrographic examination 

• Boron transmutation releases relatively large amounts of localized energy

• Important to characterize the type and extent of damage due to transmutation

• Lithium detection using atom probe tomography and dynamic secondary ion mass 
spectroscopy

• If lithium is detectable, these tools will help determine its quantity and distribution 
within the irradiated specimens



Neutron Shielding Efficiency 

• Performance of concrete and thin system 
admixture is similar under a mixed neutron 
energy spectrum

• 1 cm mortar w/ boron admixtures equivalent to 
20 cm radiological concrete 

• Thin system admixture outperforms concrete 
admixture under purely fast neutron flux

• Thin system enhances rate of thermalization 
and, thus, the effective neutron capture 
efficiency

Neutron flux

Proposed System – 1 cm

Radiological  Concrete – 20 cm



Challenges and Risks

• Unresolved challenge: 

• Unknown how microstructural damage due to boron transmutation into lithium 
translates to the macroscale

• Longer-term irradiation or irradiation under high flux may be necessary to 
adequately determine damage propagation in systems with boron

• Resolved challenges:

• Boron is less effective at neutron capture at higher neutron energies 

• Modifications to boron admixture significantly enhances neutron capture 
efficiency

• Limited access between reactor vessel and biological shield for effective 
retrofit application

• Thin system admixture can significantly reduce shield size while 
maintaining high shielding efficiency



Potential Partnerships 

• UFTR is a 100 kW (1.8 x 1012 n/cm²-sec) reactor that 

can offer

• Sample Irradiations

• Neutron Activation Analysis

• Neutron Beam Port Use

• Real-time Neutron Radiography

• Detection System Use

• RJ Lee Group – microscopy and petrography 

(optical/SEM/EBSD), analytical chemistry, failure 

analysis, material characterization

• Team composition is very broad: academia, industry, 

electric power industry funded research



Summary Slide

• Admixtures designed for concrete and thin shields allow for considerable size 

reduction without negatively affecting shielding efficiency 

• On-going goals include:

• Assessing irradiation-induced 

microstructural damage and tracking 

transmuted lithium in irradiated 

specimens 

• Establishing a supplier-customer 

relationship between next-gen NPP 

OEM and concrete admixture 

producer 

Neutron flux

Proposed System – 1 cm

Radiological  Concrete – 20 cm



https://arpa-e.energy.gov

http://www.arpa-e.energy.gov/
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Supplemental Slides 



How Minerology Characteristics Correlate to Expansion Test Results

▸Petrographic Results of Reactive Components of Aggregate Tested 

▸Effect of rock density and porosity, crushing?

▸Pessimum effect and/or chemistry of system?

▸Lithium mitigation mechanism need further evaluation

▸Post expansion mortar bar petrography
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N. Carolina Coarse Aggregate Texas Sand

Microcrystalline quartz in 
sedimentary rock –
mudstone/siltstone

Amorphous Glass or 
cryptocrystalline from volcanics
(rhyolites and dacites, pumice)

Strained Quartz (granite)

Cryptocrystalline Quartz (chert/flint)



Mechanism by which LiNO3 Mitigates ASR

‣ Mechanism still not well understood

‣ Amount of lithium nitrate needed to mitigate ASR has been identified as 
a function of the sodium oxide equivalent of pore solution and generally 
identified as  Li:(Na+K) = 0.74

‣ The effectiveness of LiNO3 varies with the concrete alkali content and 
the type of reactive aggregate to counteract (regardless of the 
aggregate reactivity), and its petrographic nature.

‣ Most likely mechanism is the reduction/suppression of silica 
dissolution in the aggregate.

– Reason unknown, but some indication of a protective shell around certain 
aggregate limiting dispersion of dissolved silica.
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Mortar Bars Examined Post C1260 Testing NC and Tx Aggregate

• Control with 1500 g/m3 10B and 1500 g/m3 10B and 80 years of transmuted Li
• Expansion correlates with gel formation.  More ASR gel and cracking in the Control specimens as 

compared to the Li dosed.
• Aggregates in the NC samples were cracked with gel within the cracks in aggregate and into the 

paste.  No ASR rims.
▸The Texas aggregate showed ASR rims forming around aggregate, especially in the Li as compared 

with the control.  
▸All the NC aggregate was crushed while the Tx sand could have naturally sized particles included 

in the testing.
– Tx aggregate showed completely reacted chert sand grains with no expansion in the Li 

samples.
▸Observations indicate the silica dissolution of the aggregate, porosity of aggregate, and particle 

size pessimum effect are likely reason for difference in LiNO3

– NC aggregate more porous and more silica dissolution was observed.
– Tx aggregate showed potential pessimum effect and ASR gel rims, and reaction confined 

within aggregate.



NC Coarse Aggregate

Control

80 year Li
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Lithium silicate gel 
in crack



Texas Fine Aggregate

Control

80 year Li
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